张楠
博士,教授,博士生导师,山东大学齐鲁青年学者
Email:zhang_nan@sdu.edu.cn
Google Scholar: https://scholar.google.com/citations?user=JCTW0fQAAAAJ&hl=en
ResearchGate: https://www.researchgate.net/profile/Nan-Zhang-119
教育背景
2013.09-2018.06
美国俄勒冈州立大学-土木与建筑工程系,土木(岩土)工程,博士
导师: T. Matthew Evans 教授
2010.09-2013.06
河海大学-水利水电学院,水工结构工程,工学硕士
导师:苏怀智教授
2006.09-2010.06
重庆交通大学-河海学院,水利水电工程,工学学士
工作经历
2022.10-至今
山东大学土建与水利学院,教授、博士生导师
2019.06-2022.07
美国科罗拉多矿业大学土木与环境工程系,Research Associate
2018.06-2019.05
美国俄勒冈州立大学太平洋海洋可再生能源研究中心(PMEC),博士后研究员
2015.01-2016.01
美国俄勒冈州立大学土木与建筑工程系,教学助理(兼职)
研究方向
1. 固体废物的资源化利用
◆ 尾矿的资源化利用
◆ 尾矿土体岩土力学特性
◆ 地聚合物
2. 微观岩土力学
◆ 离散元数值模拟及高性能计算
◆ 数值图像处理、土体颗粒的三维重构
◆ 土体-结构物界面剪切微观物理力学机理研究
3. 海洋岩土工程
◆ 海洋可再生能源平台基础工程
◆ 土-锚相互作用
◆ 海洋岩土工程结构的多场耦合
4. 水工结构安全工程
◆ 水工结构及深埋地下洞室安全监控、评估及病害防治
◆ 水工结构智能监测技术及方法
科研项目
1) Technological Solutions for Production of Construction Materials from Sulfidic Mine Tailings of La Libertad State, 秘鲁政府及秘鲁特鲁希略国立大学,资助金额65万美元, 主要参与人,执行时间: 04/01/2022-07/31/2022;
2) Development of Sustainable and Innovative Solutions for Reuse of Arequipa Mine Tailings as Construction Materials, 秘鲁政府及秘鲁圣奥古斯丁国立大学,资助金额120万美元, 主要参与人,执行时间: 01/01/2021-07/31/2022;
3) Sustainable Mining through Transformation of Mining Liabilities into Benefits in Arequipa Region, Peru. 秘鲁政府及秘鲁圣奥古斯丁国立大学,资助金额40万美元, 主要参与人,执行时间: 06/2019-12/2020;
4) Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (Part IV): Robust Models for Design of Offshore Anchoring Systems, 美国国家能源部,资助金额60万美元,主要参与人, 执行时间:01/2015-05/2019;
5) Development of Algorithms for the Quantification and Simulation of Three-Dimensional Microstructure in Granular Materials , 美国自然科学基金委员会,资助金额8万美元,主要参与人,执行时间: 09/2013-12/2014.
论文发表
1) Zhang, N., Hedayat, A., Figueroa, L., Li, H., Bolaños Sosa, H., Tupa, N., Morales, I. Y., and Loza, R. S. C (2022). Experimental studies on the durability and leaching properties of the alkali-activated tailings subjected to different environmental conditions, Cement and Concrete Composites, 130 104531 (JCR一区)
2) Zhang, N., Hedayat, A., Han, S., Ma, S., Bolaños Sosa, H., Tupa, N., Morales, I. Y., and Loza, R. S. C (2022). Fracture properties of tailings-based geopolymer incorporated with class F fly ash under mode I loading conditions, Engineering Fracture Mechanics, 271, 108646. (JCR一区)
3) Zhang, N., Hedayat, A., Perera-Mercado, Y., Sosa, H. G. B., Bernal, R. P. H., Tupa, N., Morales, I. Y., and Loza, R. S. C. (2022). Including class F fly ash to improve the geopolymerization effects and the compressive strength of mine tailings-based geopolymer. Journal of Materials in Civil Engineering. 34(11), 04022313
4) Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., Loza, R. S. C. (2021). On the incorporation of class F fly-ash to enhance the geopolymerization effects and the splitting tensile strength of the gold mine tailings-based geopolymer, Construction and Buildings Materials, 308, 125112. (JCR一区)
5) Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., Loza, R. S. C. (2021). Fracture properties of the gold mine tailings-based geopolymer under mode I loading condition through semi-circular bend tests with digital image correlation, Theoretical and Applied Fracture Mechanics, 116, 103116. (JCR一区)
6) Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., and Loza, R. S. C. (2021). Crack evolution in the Brazilian disks of the mine tailings-based geopolymers measured from digital image correlations: An experimental investigation considering the effects of class F fly ash additions. Ceramics International, 47(22), 32382-32396. (JCR一区)
7) Zhang, N., Hedayat, A., Sosa, H. G. B., Cárdenas, J. J. G., Álvarez, G. E. S., and Rivera, V. B. A. (2021). Specimen size effects on the mechanical behaviors and failure patterns of the mine tailings-based geopolymer under uniaxial compression. Construction and Building Materials, 281, 122525. (JCR一区)
8) Zhang, N., Hedayat, A., Sosa, H. G. B., Cárdenas, J. J. G., Álvarez, G. E. S., and Rivera, V. B. A. (2021). Damage evaluation and deformation behavior of mine tailing-based Geopolymer under uniaxial cyclic compression. Ceramics International, 47(8), 10773-10785. (JCR一区)
9) Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., and Morales, I. Y. (2022). Mixed-mode fracture of compacted tailing soils. I: Fracture toughness. Theoretical and Applied Fracture Mechanics. (Under Revision) (JCR一区)
10) Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., and Loza, R. S. C. (2022). Mixed-mode fracture of compacted tailing soils. II: Crack properties from full-field displacement fields. Theoretical and Applied Fracture Mechanics (Under Revision) (JCR一区)
11) Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., and Loza, R. S. C. (2021). Mechanical and fracture behaviors of compacted gold mine tailings by semi-circular bending tests and digital image correlation. Construction and Building Materials, 306, 124841. (JCR一区)
12) Zhang, N., Hedayat, A., Sosa, H., Tunnah, J., Cárdenas, J., and Álvarez, G. E. S. (2021). Estimation of the mode I fracture toughness and evaluations on the strain behaviors of the compacted mine tailings from full-field displacement fields via digital image correlation. Theoretical and Applied Fracture Mechanics, 114, 103014. (JCR一区)
13) Zhang, N., Zhao, S., Evans, T.M, Du, Y. Wang, H. and Lian, Y. (2022). Micromechanical behaviors and fabric within the immediate influence zone of granular-continuum interfaces. European Journal of Environmental and Civil Engineering, 26(3), 1158-1181.
14) Zhang, N., Hedayat, A., Han, S., Yang, R., Sosa, H. G. B., Cárdenas, J. J. G., and Álvarez, G. E. S.(2021). Isotropic compression behavior of granular assembly with non-spherical particles by X-ray computed tomography and discrete element modeling. Journal of Rock Mechanics and Geotechnical Engineering, 13, 972-984. (JCR一区)
15) Zhang, N., T. M. Evans, Zhao, S., Du, Y., and Zhang, L. (2020). Discrete element method simulations on keying process of offshore plate anchor. Marine Georesources & Geotechnology, 38(6), 716-729.
16) Zhang, N., and Evans, T. M. (2019). Discrete numerical simulations of torpedo anchor installation in granular soils. Computers and Geotechnics, 108, 40-52. (JCR一区)
17) Evans, T.M. and Zhang, N.* (2019). Three dimensional simulations of plate anchor pullout in granular materials. International Journal of Geomechanics, 19(4), 04019004.
18) Zhang, N. and T.M. Evans (2018) Three-dimensional discrete element method simulations of interface shear. Soils and Foundations, 58(4), 941-956.
19) Zhao, S., Zhang, N., Zhou, X., and Zhang, L. (2017). Particle shape effects on fabric of granular random packing. Powder Technology. 310: 175-186.
20) Zhang, N., Wang, H., Ma, S., Su, H., and Han, S. (2022). Seismic holding behaviors of inclined shallow plate anchor embedded in submerged coarse-grained soils. Geomechanics and Engineering, 28(2), 197-207.
21) Su, H., Zhang, N. and Li, H. (2018). Concrete piezoceramic smart module pairs-based damage diagnosis of hydraulic structure. Composite Structures, 183, 582-593. (JCR一区)
22) Zhang, N., and Su, H. (2017). Application assessments of concrete piezoelectric smart module in civil engineering. Smart Structures and Systems, 19(5), 499-512.
23) Su, H., Zhang, N., Wen, Z., and Li, H. (2016). Experimental study on obtaining hydraulic concrete strength by use of concrete piezoelectric ceramic smart module pairs. Journal of Intelligent Material Systems and Structures, 27(5), 666-678.
24) Su, H., Zhang, N., Yang, M., Wen, Z., and Xie, W. (2015). Experimental study on natural vibration frequency identification of hydraulic concrete structure using concrete piezoceramic smart module. Journal of Vibro-engineering, 17(7).
个人专利
1)一种基于压电陶瓷机敏模块的水工混凝土强度监测装置 (实用新型)
2)一种压电陶瓷机敏模块及水工混凝土结构健康监测试验平台. (实用新型)
3)一种基于压电陶瓷机敏模块的水工混凝土强度监测装置和方法. (发明专利)
4)一种水工混凝土结构损伤监测动荷载试验平台. (实用新型)
5)一种水工混凝土结构自振频率识别的测试装置. (实用新型)
6)一种水工混凝土结构自振频率识别的测试装置及方法. (发明专利)
7)一种水工混凝土结构损伤主动监测装置及方法. (发明专利)
学术兼职
Computers and Concrete, Structural Engineering and Mechanics, Ocean Engineering, Soil Dynamics and Earthquake Engineering, Advances in Engineering Software, International Journal of Geomechanics, KSCE Journal of Civil engineering, Marine Georesources and Geotechnology, Theoretical and Applied Fracture Mechanics, Cement and Concrete Composites, Construction and Building Materials 等SCI期刊审稿人
联系方式:
通讯地址:山东省济南市经十路17922号 山东大学千佛山校区土建与水利学院
邮编:250061
电子邮箱: zhang_nan@sdu.edu.cn; zhangnan.sdu@qq.com
(English version)
Nan Zhang, Ph.D.
Full Professor in School of Civil Engineering at Shandong University, Jinan, China
Google Scholar: https://scholar.google.com/citations?user=JCTW0fQAAAAJ&hl=en
ResearchGate: https://www.researchgate.net/profile/Nan-Zhang-119
Education
Ph.D., School of Civil and Construction Engineering, 2018
Oregon State University, Corvallis, OR, USA
Ph.D. Advisor: T. Matthew Evans
Major: Geotechnical Engineering
M.S., School of Water Conservancy and Hydropower, 2013
Hohai University, Nanjing, China
M.S. Advisor: Huaizhi Su
Major: Civil Engineering (Hydraulic Structure Engineering)
B.S., School of River and Ocean Engineering, 2010
Chongqing Jiaotong University, Chongqing, China
Major: Civil Engineering (Water Resource and Hydropower Engineering)
Working experience
Research Associate, Colorado School of Mines 06/2019-07/2022
Postdoctoral Researcher, Oregon State University 06/2018-05/2019
Research Assistant, Oregon State University 09/2013-06/2018
Research Interests
1.Resource Utilization of Solid Wastes
2.Micro-and Macro Geomechanics
3.Offshore Geotechnics
4.Hydraulic Structure Safety Engineering
Research Project
1. Technological Solutions for Production of Construction Materials from Sulfidic Mine Tailings of La Libertad State, Co-authored as a post-doctoral research contributor, funding provided by Universidad Nacional de San Agustin de Arequipa with the total amount of $650k, project duration: 04/01/2022-07/31/2022
2. Development of Sustainable and Innovative Solutions for Reuse of Arequipa Mine Tailings as Construction Materials, Co-authored as a post-doctoral research contributor, funding provided by Universidad Nacional de San Agustin de Arequipa with the total amount of $1.2M. Project duration: 01/01/2021-07/31/2022
3. Sustainable Mining through Transformation of Mining Liabilities into Benefits in Arequipa Region, Peru (Peruvian Government) (2019-2021)
4. Funded by U.S. Department of Energy: Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (2015-2019), Major participant.
5. U.S. NSF funded: Development of Algorithms for the Quantification and Simulation of Three-Dimensional Microstructure in Granular Materials (2013-2015)Major participant.
Journal Publications
1) Zhang, N., Hedayat, A., Figueroa, L., Li, H., Bolaños Sosa, H., Tupa, N., Morales, I. Y., and Loza, R. S. C (2022). Experimental studies on the durability and leaching properties of the alkali-activated tailings subjected to different environmental conditions, Cement and Concrete Composites, 130 104531
2) Zhang, N., Hedayat, A., Han, S., Ma, S., Bolaños Sosa, H., Tupa, N., Morales, I. Y., and Loza, R. S. C (2022). Fracture properties of tailings-based geopolymer incorporated with class F fly ash under mode I loading conditions, Engineering Fracture Mechanics, 271, 108646.
3) Zhang, N., Hedayat, A., Perera-Mercado, Y., Sosa, H. G. B., Bernal, R. P. H., Tupa, N., Morales, I. Y., and Loza, R. S. C. (2022). Including class F fly ash to improve the geopolymerization effects and the compressive strength of mine tailings-based geopolymer. Journal of Materials in Civil Engineering. 34(11), 04022313
4) Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., Loza, R. S. C. (2021). On the incorporation of class F fly-ash to enhance the geopolymerization effects and the splitting tensile strength of the gold mine tailings-based geopolymer, Construction and Buildings Materials, 308, 125112.
5) Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., Loza, R. S. C. (2021). Fracture properties of the gold mine tailings-based geopolymer under mode I loading condition through semi-circular bend tests with digital image correlation, Theoretical and Applied Fracture Mechanics, 116, 103116.
6) Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., and Loza, R. S. C. (2021). Crack evolution in the Brazilian disks of the mine tailings-based geopolymers measured from digital image correlations: An experimental investigation considering the effects of class F fly ash additions. Ceramics International, 47(22), 32382-32396.
7) Zhang, N., Hedayat, A., Sosa, H. G. B., Cárdenas, J. J. G., Álvarez, G. E. S., and Rivera, V. B. A. (2021). Specimen size effects on the mechanical behaviors and failure patterns of the mine tailings-based geopolymer under uniaxial compression. Construction and Building Materials, 281, 122525.
8) Zhang, N., Hedayat, A., Sosa, H. G. B., Cárdenas, J. J. G., Álvarez, G. E. S., and Rivera, V. B. A. (2021). Damage evaluation and deformation behavior of mine tailing-based Geopolymer under uniaxial cyclic compression. Ceramics International, 47(8), 10773-10785. (JCR一区)
9) Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., and Morales, I. Y. (2022). Mixed-mode fracture of compacted tailing soils. I: Fracture toughness. Theoretical and Applied Fracture Mechanics. (Under Revision)
10) Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., and Loza, R. S. C. (2022). Mixed-mode fracture of compacted tailing soils. II: Crack properties from full-field displacement fields. Theoretical and Applied Fracture Mechanics (Under Revision)
11) Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., and Loza, R. S. C. (2021). Mechanical and fracture behaviors of compacted gold mine tailings by semi-circular bending tests and digital image correlation. Construction and Building Materials, 306, 124841.
12) Zhang, N., Hedayat, A., Sosa, H., Tunnah, J., Cárdenas, J., and Álvarez, G. E. S. (2021). Estimation of the mode I fracture toughness and evaluations on the strain behaviors of the compacted mine tailings from full-field displacement fields via digital image correlation. Theoretical and Applied Fracture Mechanics, 114, 103014.
13) Zhang, N., Zhao, S., Evans, T.M, Du, Y. Wang, H. and Lian, Y. (2022). Micromechanical behaviors and fabric within the immediate influence zone of granular-continuum interfaces. European Journal of Environmental and Civil Engineering, 26(3), 1158-1181.
14) Zhang, N., Hedayat, A., Han, S., Yang, R., Sosa, H. G. B., Cárdenas, J. J. G., and Álvarez, G. E. S.(2021). Isotropic compression behavior of granular assembly with non-spherical particles by X-ray computed tomography and discrete element modeling. Journal of Rock Mechanics and Geotechnical Engineering, 13, 972-984.
15) Zhang, N., T. M. Evans, Zhao, S., Du, Y., and Zhang, L. (2020). Discrete element method simulations on keying process of offshore plate anchor. Marine Georesources & Geotechnology, 38(6), 716-729.
16) Zhang, N., and Evans, T. M. (2019). Discrete numerical simulations of torpedo anchor installation in granular soils. Computers and Geotechnics, 108, 40-52.
17) Evans, T.M. and Zhang, N.* (2019). Three dimensional simulations of plate anchor pullout in granular materials. International Journal of Geomechanics, 19(4), 04019004.
18) Zhang, N. and T.M. Evans (2018) Three-dimensional discrete element method simulations of interface shear. Soils and Foundations, 58(4), 941-956.
19) Zhao, S., Zhang, N., Zhou, X., and Zhang, L. (2017). Particle shape effects on fabric of granular random packing. Powder Technology. 310: 175-186.
20) Zhang, N., Wang, H., Ma, S., Su, H., and Han, S. (2022). Seismic holding behaviors of inclined shallow plate anchor embedded in submerged coarse-grained soils. Geomechanics and Engineering, 28(2), 197-207.
21) Su, H., Zhang, N. and Li, H. (2018). Concrete piezoceramic smart module pairs-based damage diagnosis of hydraulic structure. Composite Structures, 183, 582-593.
22) Zhang, N., and Su, H. (2017). Application assessments of concrete piezoelectric smart module in civil engineering. Smart Structures and Systems, 19(5), 499-512.
23) Su, H., Zhang, N., Wen, Z., and Li, H. (2016). Experimental study on obtaining hydraulic concrete strength by use of concrete piezoelectric ceramic smart module pairs. Journal of Intelligent Material Systems and Structures, 27(5), 666-678.
24) Su, H., Zhang, N., Yang, M., Wen, Z., and Xie, W. (2015). Experimental study on natural vibration frequency identification of hydraulic concrete structure using concrete piezoceramic smart module. Journal of Vibro-engineering, 17(7).
Geotechnical Special Publications
1) Zhang, N. and T. Matthew Evans (2017). Offshore Anchor Penetration in Sands: Granular Simulations, ASCE Geo-Frontier 2017, 132-142
2) Zhang, N. and T. M. Evans (2016). Towards the Anchoring of Marine Hydrokinetic Energy Devices: Three -Dimensional Discrete Element Method Simulations of Interface Shear, ACSE Geo-Chicago 2016: 503
Conference proceedings and reports
1) Zhang, N., Hedayat, A., Bolaños Sosa, H. G., González Cárdenas, J. J., Salas Alvarez, G. E., Rivera, V. A., & González, J. (2021). Model I fracture behaviors and strain properties of the geopolymer made by alkaline activation of gold mine tailing, In 55th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.
2) Zhang, N., Hedayat, A., Bolaños Sosa, H. G., González Cárdenas, J. J., Salas Alvarez, G. E., Rivera, V. A., & González, J. (2020). Fracture and Failure Processes of Geopolymerized Mine Tailings under Uniaxial Compression. In 54th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.
3) Zhang, N., A. Hedayat, L. Figueroa, H.G. Bola˜nos Sosa, J.J. Gonz´alez C´ardenas, G. E. Salas ´Alvarez, V. Ascu˜na Rivera, J. Gonz´alez, (2020). Specimens size effect on the compressive strength of geopolymerized mine tailings, in: Tailings & Mine Waste Conference 2020, Keystone, CO, USA, 2020.
4) Zhang, N. and T. Matthew Evans (2019). Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (Part IV): Robust Models for Design of Offshore Anchoring and Mooring Systems. Final Report, U.S. Department of Energy, Washington, D.C.
5) Zhang, N. and T. Matthew Evans (2018). Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (Part IV): Robust Models for Design of Offshore Anchoring and Mooring Systems. Milestone Report II, U.S. Department of Energy, Washington, D.C.
6) Zhang, N. and T. Matthew Evans (2017). Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (Part IV): Robust Models for Design of Offshore Anchoring and Mooring Systems. Annual Report, U.S. Department of Energy, Washington, D.C.
7) Zhang, N. and T. Matthew Evans (2016). Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (Part IV): Robust Models for Design of Offshore Anchoring and Mooring Systems. Annual Report I, U.S. Department of Energy, Washington, D.C.
8) Zhang, N. and T. Matthew Evans (2016). Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (Part IV): Robust Models for Design of Offshore Anchoring and Mooring Systems. Annual Report II, U.S. Department of Energy, Washington, D.C.
9) Zhang, N. and T. Matthew Evans (2016). Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (Part IV): Robust Models for Design of Offshore Anchoring and Mooring Systems. 1st Milestone Report I, U.S. Department of Energy, Washington, D.C.
Presentations
1) Model I fracture behaviors and strain properties of the geopolymer made by alkaline activation of gold mine tailing, In 55th US Rock Mechanics/Geomechanics Symposium. (Virtual)
2) Fracture and failure processes of geopolymerized mine tailings under uniaxial compression, in: 54th 54th US Rock Mechanics/Geomechanics Symposium (Virtual)
3) Specimens size effect on the compressive strength of geopolymerized mine tailings, in: Tailings & Mine Waste Conference 2020 (Virtual)
4) Offshore anchor penetration in sands—Granular simulations. In Geotechnical Frontiers 2017, Orlando, FL, USA
5) Towards Anchoring of Marine Hydrokinetic Energy Devices: Three-Dimensional Discrete Element Method Simulations of Interface Shear. In ASCE Geo-Chicago 2016, Chicago, IL, USA
6) Discrete element simulation of torpedo anchor installation into granular soils. In OSU-China Seminar 2016, Corvallis, OR, USA
Poster Presentations
1) Zhang, N. and T.M. Evans (2017). Installation behavior of torpedo anchor in marine hydrokinetic system. In Advanced Laboratory and Field Arrays (ALFA) project annual meeting of Northwest National Marine Renewable Energy Center (NNMREC). Portland, OR, USA
2) Zhang, N. and T.M. Evans (2016). Offshore Anchor Penetration in Sands: Granular Simulations. In Advanced Laboratory and Field Arrays (ALFA) project annual meeting of Northwest National Marine Renewable Energy Center (NNMREC). Portland, OR, USA
3) Zhang, N. and T.M. Evans (2016). DEM Simulations of offshore plate anchor pullout in granular materials. In 3rd Northwest Geotechnical Graduate Student Symposium. Vancouver, BC, CA
4) Zhang, N. and T.M. Evans (2016). Anchoring of Marine Hydrokinetic Energy Devices: Three Dimensional Simulations of Interface Shear. In OSU CCE graduated-expo 2016. Portland, OR, USA
5) Zhang, N. and T.M. Evans (2015). Soil-Structure Interaction of Marine Hydrokinetic Anchoring System. In Advanced Laboratory and Field Arrays (ALFA) project annual meeting of Northwest National Marine Renewable Energy Center (NNMREC). Portland, OR, USA
6) Zhang, N. and T.M. Evans (2015). Particle shape quantification of granular media by using three-dimensional image processing. In 2nd Northwest Geotechnical Graduate Student Symposium. Corvallis, OR, USA
7) Zhang, N. and T.M. Evans (2014). Quantification and Simulation of Three-Dimensional Microstructure in Granular Materials. In OSU CCE graduated-expo 2014. Portland, OR, USA
8) Zhang, N. and T.M. Evans (2014). Local void quantification of granular media by using three-dimensional image processing. In 1st Northwest Geotechnical Graduate Student Symposium. Seattle, WA, USA
Contacts:
School of Civil Engineering
Shandong University
17922 Jingshi Road, Jinan 250061, China
Email: zhang_nan@sdu.edu.cn; zhangnan.sdu@